ARRAYMAN

Page 1 of 7 


  The plugin array.vim implements arrays.  Although a simple implementation,

  it addresses most basic array applications.  It is based on user defined

  commands (see :h 40.2, :h user-commands, and :h command) that can be

  used both on the command line and in scripts.  These commands are

  a syntactical convenience to provide ease of use and readability.  For

  the more ambitious, functions called by these commands can be accessed

  directly.  The use and description of these functions will not be

  treated here.  From the command descriptions here, and reviewing the

  related command/function declaration/definition in array.vim, function

  usage should be readily apparent.

  For quick reference, the command ARRAYSYN displays the syntax for all

  commands.  For more detail with simple examples, use the command

  ARRAYUSE.  Both of these have an optional command name argument which

  provides for the display of specific commands.  For example, 

       ARRAYSYN  ARRAYNEW

  will display syntax information on array creation.

  To use an array, you must first create one.  The command ARRAYNEW is

  used to do this.  The following describes how this is done and also

  gives general information on array basics as they apply.

  The syntax of the command is:

       ARRAYNEW decl size [init] [s]

  ARRAYNEW takes 2 required arguments and 2 optional.  The required

  arguments are decl and size.  decl specifies the declared name of the

  array.  size declares the number and size of each dimension of the

  array.  An example is:

       ARRAYNEW b:array: 1:2:3:
  which creates an array named b:array: in the current buffer.  The use of

  a scope specification letter in decl is necessary and typical of all

  array commands.  The only letters which may be used are b w g for

  buffer, window, and global, respectively.  Other letters cannot be used

  as their scopes will not be recognized in the function environment(s)

  the command(s) call.

  The dimension/size specifier tells ARRAYNEW how many dimensions there

  are and the size of each.  Arrays are filled in row major, meaning the

  row is filled, column by column.  Here the term row is relative and

  only has the classic meaning in a 2 dimensional array.  In the example,

  you may think of the row as being of one dimension with 2 X 3 columns,

  or you may think of the row as being of two dimensions with 3 columns.

  Either way, the result is the same, the filling order is 0:0:0:, 0:0:1:,

  0:0:2:, 0:1:0:, 0:1:1:, 0:1:2:.  This is also a good place to point out

  that arrays are base 0, however, the size specification base is 1.

  init specifies an optional list of initialization values.  It can come

  in two flavors: a comma separated list, or a string.  If it is in the

  form of a string, the optional argument s must be used.

       ARRAYNEW b:array: 1:2:3: 1,2,3,4,5,6
  Creates an array initialized to the values specified, in the order

  specified.  The array consists of 6 elements and there are 6 values, so

  the array is fully populated.

       ARRAYNEW b:array: 1:2:3: 1,2,3
  This time there are only 3 values, so the array is not fully populated.

  What are the remaining elements?  By default,  they are '<Nul>'.  To

  change this default, use let g:arrayInitVal=[your-choice].

       ARRAYNEW b:array: 1:2:3: my,array
  First 2 elements of the array are 'my' and 'array' with the remaining

  4 set to '<Nul>'.

       ARRAYNEW b:array: 2:2:3: m,y,\ ,a,r,r,a,y
  Elements 0:0:0: thru 1:0:1: are user initialized, 1:0:2: thru 1:1:2:

  are defaulted.

       let b:why='y'
       ARRAYNEW b:array: 2:2:3: m,b:why,\ ,a,r,r,a,b:why
  Gives the same result as the previous example.

       ARRAYNEW b:array: 1:2:3: my\ array s
  A third way to populate the first 8 elements.

  A few words about strings vs. string literals.  In arrays, the

  difference is that a string is stored without quotation marks while

  a string literal is stored with them (as supplied by the user).  So the

  difference between

       ARRAYNEW b:array: 1:2:3: my\ array
  and

       ARRAYNEW b:array: 1:2:3: 'my\ array'
  is that the first is stored without quotation marks, while the second

  is stored with them (in this case, single quotation marks).  In both

  instances, the first element of the array is initialized.

  Now to comment on how to use the elements of the array.  The values can

  be used as any variable.  When used as the right hand side (rhs) of an

  expression, they can be employed with impunity.  The expression

       let ltrM=b:array:0:0:0:
  assigns the letter 'm' from the above created array to the variable ltrM.

  And although the obverse is equally valid, left hand side (lhs) use can

  cause problems:

       let b:array:3:2:2:=ltrM
  from the example, there is no b:array:3:2:2: element in the array.  It

  is, however, created outside the bounds of the array.  There is an

  alternative way to handle this, with bounds checking.  This will be

  addressed further on in this discussion.  For right now, just remember,

  rhs == safe, lhs == risky.

  Now that an array has been created, how do we change values within the

  array?  The ARRAYSET command is used for this.  With this command,

  single elements as well as sub arrays and entire arrays can be set.

  The syntax is:

       ARRAYSET decl val [s]

  decl has the same usage as in ARRAYNEW, as does val, being the

  equivalent of init in that command.  The optional argument, s,

  likewise has the same usage when val is a string.  Again, some

  examples:

       ARRAYSET b:array: 1,way,||,another
  Sets the array to the specified values  .In this case, only one value,

  and the whole array is specified, so the first element of the array is

  set.

  With ARRAYSET, decl can also specify an element or a sub array.

       ARRAYSET b:array:1: 1,way,||,another
  sets elements 1:0:0: thru 1:1:0:, with 0:0:0: thru 0:1:2: and 1:1:1: and

  1:1:2: defaulting to <Nul>.

  To set a single element, just specify the element as decl and give it

  a val
       ARRAYSET b:array:1:1:2: 1\ way\ ||\ another
  sets the element and checks bounds to assure it is in the array.  This

  obviates the lhs problem in expression assignments.

  You can retrieve array elements or sub arrays or entire arrays using

  ARRAYGET.  The syntax is

       ARRAYGET decl [var]

  var is an optional variable or list of variables in which array element

  values are to be placed.  If it is not specified, the values are

  displayed on the command line.  A simple example would be:

       ARRAYGET g:status:3:1: b:current
  This gets the 4th row, second element (assuming a 2 dimensional array

  4 X 2) from the array and places it in the argument variable.  This is

  equivalent to:

       let b:current=g:status:3:1:
  Although you can use individual array elements as the rhs of an

  expression, assignment of multiple array elements can be a tedious

  task.  ARRAYGET simplifies this by accepting a comma separated list,

  var, of variables and assigning successive elements of decl to them.

       ARRAYGET b:addrBook:2: b:name,b:address,b:phone
  This one statement replaces 3 let statements, retrieving the name,

  address, and phone from the third row in an address book array.

  You can make copies of arrays and sub arrays with the ARRAYCPY command.

  Its syntax is:

       ARRAYCPY srcdecl dstdecl
  For example, the command

       ARRAYCPY b:array: b:arycpy:
  copies b:array: to b:arycpy:, while

       ARRAYCPY b:array:0: b:subarycpy:
  copies the sub array b:array:0: to b:subarycpy:
  Think of ARRAYCPY as an ARRAYGET for arrays, or, what let would do if

  vim recognized arrays.

  The dimension of an array can be obtained through the command ARRAYDIM.

  A string of the form 'size X size X size...' is returned.

       ARRAYDIM b:array:
  would return '1 X 2 X 3' for an array created with

       ARRAYNEW b:arrray: 1:2:3:
  while

       ARRAYDIM b:array:0:
  would return '2 X 3' for the same array.

  Lastly, to delete an array use ARRAYDEL.  The syntax is:

       ARRAYDEL decl
  NOTE:

     Only arrays, not sub arrays, may be deleted.  This is because

     deletion of a sub array could cause the resultant array to be

     asymmetrical.

  Let's put it all together.  This is an example of using array.vim
  commands to implement an address book array in a vim script.

  First create the array with 3 dimensions.  The first will be the number

  of entries.  The second will be addresses, and the third will be phone

  numbers.  We'll have a home address and a business address to put in the

  second dimension.  For phones, we want to be able to contact these

  people almost anywhere, so we'll have 3 phone numbers: business, cell,

  and home.

  This translates to an X:2:3: array size.  For 'X' we'll use 10, to keep

  track of our ten most contacted people (important contacts).

ARRAYNEW g:addrbk: 10:2:3:

  \ Dave,1010\ Silicon\ Way,123\ Elm\ St,5552447\ x300,5552355,5554663,

  \John,1010\ Silicon\ Way,986\ Walnut\ Dr,5552447\ x304,5551776,5552004,

  \Frank,1180\ Industry\ Park,836\ Cherry\ Av,5551212,5552355,5554663,

  \Harry,1180\ Industry\ Park,7734\ Dogwood,5551212,<Nul>,5553320

  This gives us a new global array with 4 initial entries in g:addrbk:.

  We add a receptionist who doesn't give out her home address, has no

  cell phone, and doesn't want her home phone advertised.

ARRAYSET g:addrbk:4: Debbie,1010\ Silicon\ Way,<Nul>,5552447\ x314
  Now we could define commands or functions to access these entries (and

  probably would), and they'd all use ARRAYGET to access the information.

  However, for brevity's sake, here we'll just use the command directly.

  We need to get in touch with Frank, row index 2 in the array.

ARRAYGET g:addrbk:2:
  This would display

- Frank - 1180 Industry Park - 836 Cherry Ave. - 5551212 - 5552355 - 5554663 -

   To get just phones

ARRAYGET g:addrbk:2:1:
  which returns

- 5551212 - 5552355 - 5554663 -

   To get his business address

ARRAYGET g:addrbk:2:0:1:
  which returns

- 1180 Industry Park -

  And so on.

 There is a sample file, example/addrbook.vim, included with this

  package that illustrates this example along with suggested commands

  and a function for accessing the array.

     This section just deals with some miscellany, partly about the

     function interface, but also about the buffer variables that can be

     used to control various aspects of array.vim behavior.  It will be

     quite short, further information can be gleaned from perusing

     array.vim.

  For each command there is a corresponding function which is lower case

  excepting the first letter, and the first letter of the command acronym.

  E.G., for ARRAYGET, the corresponding function is ArrayGet().

  The command mechanism in vim passes arguments to functions enclosed in

  quotes.  You will have to mimic this behavior to use the functions.

  Because arguments are quoted, you should dereference variables to their

  constituent parts before quoting and passing.

  The following variables can be assigned values to control some aspects

  of function behavior.

  g:arrayInitVal

       specifies the value to be placed in non-initialized array elements.

  g:arrayVerboseMsg

       if zero, turns off messages and warnings, default is one.

  Other buffer variables exist which control display colors, see script.

