vimsh version 1.1

Page 1 of 4

vimsh and vimsh.bat

vimsh and vimsh.bat are simple Vim script shell command line interpreters for UNIX and MSDOS respectively. You type Vim script code into a .vimsh file then, using the appropriate interpreter, execute the file from the command line. The interpreter takes this code and encapsulates it into a Vim script function and calls the function, capturing any output and echo-ing it to the shell command line.

The .vimsh file

The structure of a .vimsh file is simple and analogous to other interpreted script files in UNIX. It consists of a single header line identifying the file as an executable script with ‘vimsh’ as the interpreter (this is not needed with MSDOS, however, the line is still included for uniformity across platforms and the MSDOS interpreter expects it as does the UNIX interpreter). As an example:

#!/usr/local/bin/vimsh

let nr=1

echo ‘Counting to 10…’

echo ‘’

while nr <= 10

echon nr.’ ‘

let nr=nr+1

endwhile

echo ‘Done’

In UNIX the shell looks at the first line for the name of an interpreter in script files. It hands off the file to that interpreter, in this case ‘vimsh’ (in MSDOS, the mechanism is quite different, but the outcome is the same, more about that later). The interpreter then parses the script, executes the code, and displays the results. This is exactly what happens with vimsh.

Here, the output would be:

Counting to 10…

1 2 3 4 5 6 7 8 9 10

Done

Unix Setup

Setup in UNIX is quite easy. Simply place the sh version of vimsh (vimsh) in a directory in your $PATH. Now, any .vimsh file the shell recognizes as an executable script (i.e., it resides somewhere in $PATH, has its mode set to executable, and has vimsh designated as the command line interpreter in its first line) will have its Vim script code interpreted, executed, and the results displayed.

MSDOS Setup

Setup for MSDOS is a little more involved. Besides placing the bat version of vimsh (vimsh.bat) in a directory in your %PATH, you must also tell MSDOS what sort of files vimsh is associated with. Unfortunately, Microsoft is not completely clear on how this is done on all Windows platforms, but this method seems to work okay. First use the ASSOC command to associate the .vimsh file extension with a ‘file type’:

ASSOC .vimsh=VimShellScript

Then use the FTYPE command to associate the ‘file type’ with a command for cmd.exe to execute:

FTYPE VimShellScript=C:\<your-location>\vimsh.bat “%1”

Now any file located in %PATH that has a .vimsh extension will be identified as a VimShellScript and associated with the command ‘C:\<your-location>\vimsh.bat “%1”’. Here ‘<your-location>’ is wherever you chose to place vimsh.bat. Now for 2 comments about spaces in pathnames in Microsoft file systems. 1) WATCH THEM. 2) WATCH THEM CAREFULLY. Although Microsoft says they support spaces in pathnames (and by and large, they do) there are ‘holes’ where they slip through. Mostly, these holes deal with arguments. So, firstly, for <your-location>, theoretically a path (say ‘C:\Documents and Settings\Dave’) with spaces is allowed, however, you’re better off (because of exceptions) to not use a path with spaces. Secondly, the double quotes around %1 are there for exactly that reason; to protect any paths that have spaces. Don’t leave them out.

You can also eliminate the need for typing the extension (however, not the actual need for the extension in the file’s name) by modifying %PATHEXT. You can do this in the autoexec, if your system uses one, or if autoexec is not used, in the Control Panel ‘System’ menu under ‘Advanced’ and ‘Environment Variables’. Either edit the Control Panel entry, or append ‘.vimsh’ to PATHEXT in the autoexec:

SET PATHEXT=%PATHEXT%;.vimsh

Script Execution

Script execution is accomplished the same as any other executable script, that is, by invoking the script name. For example, in the example scripts in this package there is a script named ‘vimtest.vimsh’. On either platform, providing of course the script is suitably located, you simply type:

vimtest.vimsh

on the command line. Note that in UNIX, the script can have any extension (or none) since it is the first line of the script that defines how it is to be interpreted and executed. This is not the case in MSDOS, however, as that system uses file extensions to determine how a file is to be interpreted and/or executed. As described above, you can at least eliminate the need to type the extension in MSDOS by defining the extension in %PATHEXT.

Script file content

The content of the script file can be any Vim script code. There are a couple of caveats, however, and these deal with shell escape commands in Vim. These can be a part of the script, but they cannot be embedded. That is, escapes to the shell to execute commands must be standalone, they cannot be part of a Vim script construct such as a loop or a function, etc. This is because the interpreter executes them separately, so any embedding would disrupt code flow causing vimsh to ‘freeze’. Also, their output is not captured by the interpreter, but rather left as placed by execution in the shell. This being the case, their output may not always occur ‘as formatted’ by your code.

Using Arguments

Arguments can be passed to the script on the command line in the usual fashion with pretty much the same caveats as other executable scripts. For example, in MSDOS, when quoting is needed, it is double quotes. An easy example is from the counting.vimsh script. Without arguments, it issues a terse usage message.

counting.vimsh

Usage: counting.vimsh fromNr toNr

 Counts from 'fromNr' to 'toNr'

With arguments supplied.

counting.vimsh 12 3

Counting from 12 to 3

12 11 10 9 8 7 6 5 4 3

Done

Arguments are supplied to the script via a mechanism similar to the variable argument mechanism in Vim script functions. In functions these arguments are specified as a:1, a:2, …, a:n with a:0 holding the argument count. vimsh passes the arguments identically, except they are globals, i.e., g:1, g:2, …, g:n with g:0 holding the argument count.

Also, for special cases, notably when Vim commands/functions (usually user defined) are executed silently, within Vim messages are suppressed from appearing on the command line. However, they are not eliminated and are gathered up by general redirection. Frequently you do not want this output, so vimsh has a global return value you can set, g:Ret. If this variable exists when vimsh is run, the script’s returned output is displayed instead of the normal redirection vimsh uses. See the script vimgrep.vimsh for an example.

The output from the last vimsh script executed is placed in the file ~/.vimsh.out. This is handy as in some cases, due to terminal interfaces with Vim, the displayed output may contain control characters, and command line redirection is not always optimal. The contents of this file are ‘raw’ in that they have no special terminal escape sequences. To see this, try executing the script vimgrep.vimsh with command line redirection and compare the contents of the redirected file with the contents of ~/.vimsh.out. I ran this in a cygwin DOS command prompt window running a bash login shell.

vimgrep.vimsh ‘indent $VIMRUNTIME/indent/*.vim –t’ >vimgrep.out

-rw-r--r-- 1 Dave None 52827 Aug 27 12:06 .vimsh.out

-rw-r--r-- 1 Dave None 55481 Aug 27 12:06 vimgrep.out

Control character escape sequences and garbage replaced the first (empty) line of the file and 2 lines of control character escape sequences were added to the end.

The package contains example scripts that illustrate shell escapes, requesting input, and processing arguments.

