
perlsupport.txt[help][−] 01/13/2006 07:29:33 PM Page 1

perlsupport.txt Perl Support Jan 13 2006

Perl Support *perl−support* *perlsupport*

 Plugin version 2.9
 for Vim version 6.0 and above
 Fritz Mehner <mehner@fh−swf.de>

perl−support.vim implements a Perl−IDE for Vim/gVim. It is written to
considerably speed up writing code in a consistent style. This is done by
inserting complete statements, comments, idioms, code snippets, templates,
comments and POD documentation. Reading perldoc is integrated. Syntax
checking, running a script, starting a debugger and a profiler can be done
with a keystroke. There are many additional hints and options which can
improve speed and comfort when writing Perl.

 1. Usage with GUI |perlsupport−usage−gvim|
 1.1 Menu 'Comments' |perlsupport−comments|
 1.1.1 Append aligned comments |perlsupport−aligned−comm|
 1.1.2 Code to comment |perlsupport−code−to−comm|
 1.1.3 Comment to code |perlsupport−comm−to−code|
 1.1.4 Comment templates |perlsupport−comm−templates|
 1.1.5 KEYWORD + comment |perlsupport−comm−keywords|
 1.2 Menu 'Statements' |perlsupport−statements|
 1.2.1 Normal mode, insert mode |perlsupport−stat−norm−ins|
 1.2.2 Visual mode |perlsupport−stat−visual|
 1.2.3 Code snippets |perlsupport−stat−snippets|
 1.3 Menu 'Idioms' |perlsupport−idioms|
 1.3.1 Stub subroutine |perlsupport−stub−sub|
 1.3.2 Opening files |perlsupport−open−files|
 1.4 Menu 'Regex' |perlsupport−regex|
 1.5 Menu 'CharCls' |perlsupport−charcls|
 1.6 Menu 'File−Tests' |perlsupport−filetests|
 1.7 Menu 'Spec−Var' |perlsupport−specvar|
 1.8 Menu 'POD' |perlsupport−pod|
 1.8.1 Menu 'invisible POD' |perlsupport−pod−invisible|
 1.8.2 Run podchecker |perlsupport−podchecker|
 1.9 Menu 'Run' |perlsupport−run|
 1.9.1 Run script |perlsupport−run−script|
 1.9.2 Check syntax |perlsupport−syntax−check|
 1.9.3 Command line arguments |perlsupport−cmdline−args|
 1.9.4 Debug |perlsupport−run−debug|
 1.9.5 Read perldoc |perlsupport−perldoc|
 1.9.6 Generate Perl module list |perlsupport−module−list−generation|
 1.9.7 Show installed Perl modules |perlsupport−module−list|
 1.9.8 Run perltidy |perlsupport−perltidy|
 1.9.9 Run SmallProf |perlsupport−profile|
 1.9.10 Run perlcritic |perlsupport−perlcritic|
 1.9.11 Save buffer with timestamp |perlsupport−timestamp|
 1.9.12 Hardcopy |perlsupport−hardcopy|
 1.9.13 Xterm size |perlsupport−xterm|
 1.9.14 Change Output Destination |perlsupport−output|
 1.10 Help |perlsupport−help|
 2. Usage without GUI |perlsupport−usage−vim|
 3. Hotkeys |perlsupport−hotkeys|
 4. Customization and configuration |perlsupport−customization|
 4.1 Files |perlsupport−custom−files|
 4.2 Global variables |perlsupport−custom−variables|
 4.3 The root menu |perlsupport−custom−root|
 4.4 Navigate through PODs |perlsupport−custom−navigate|
 4.5 Tabulator width |perlsupport−custom−tab|
 5. Template files and tags |perlsupport−tempfiles|
 5.1 Template files |perlsupport−tempfiles|
 5.2 Tags |perlsupport−tags|
 6. Perl Dictionary |perlsupport−dictionary|
 7. MS−Windows particularities |perlsupport−windows|
 8. Troubleshooting |perlsupport−troubleshooting|
 9. Release Notes |perlsupport−release−notes|
 10. Credits |perlsupport−credits|

 How to add this help file to vim's help |add−local−help|

==

perlsupport.txt[help][−] 01/13/2006 07:29:33 PM Page 2

1. USAGE WITH GUI (gVim) *perlsupport−usage−gvim*
==

If the root menu 'Perl' is not visible call it with the entry
"Load Perl Support" from the standard Tools−menu.
The entry "Unload Perl Support" can be used to unload the Perl root menu.
See also |perlsupport−custom−root| .

−−
1.1 MENU 'Comments' *perlsupport−comments*
−−

1.1.1 APPEND ALIGNED COMMENTS TO CONSECUTIVE LINES *perlsupport−aligned−comm*
−−
In NORMAL MODE the menu entry
 'Line End Comm.'
will append a comment to the current line.

In VISUAL MODE this entry will append aligned comments to all marked lines.
Marking the 3 lines

my $x11 = 11;
my $x1111 = 1111;

my $x11111111 = 11111111;

and choosing 'Line End Comm.' will yield

my $x11 = 11; # |
my $x1111 = 1111; #

my $x11111111 = 11111111; #

The cursor position above is marked by '|' . Empty lines will be ignored.

The default starting column is 49 (= (8*6 or 4*12 or 2*24) + 1). This can
be changed by setting a global variable in the file .vimrc , e.g. :

 let g:Perl_LineEndCommColDefault = 45

The starting column can also be set by the menu entry 'Comments−>Set End Comm.
Col.' . Just position the cursor in an arbitrary column (column number is
shown in the Vim status line) and choose this menu entry. This setting is
buffer related.

1.1.2 CODE TO COMMENT *perlsupport−code−to−comm*
−−−−−−−−−−−−−−−−−−−−−
A marked block will be changed into

#my $x11 = 11;
#my $x1111 = 1111;
#my $x11111111 = 11111111;

The menu entry works also for a single line. A single line needs not to be
marked.

1.1.3 COMMENT TO CODE *perlsupport−comm−to−code*
−−−−−−−−−−−−−−−−−−−−−
A marked block

#my $x1 = 1;
my $x11 = 11;
 my $x1111 = 1111;
 # my $x11111111 = 11111111;

will be changed into

my $x1 = 1;
my $x11 = 11;
 my $x1111 = 1111;
 my $x11111111 = 11111111;

perlsupport.txt[help][−] 01/13/2006 07:29:33 PM Page 3

The menu entry works also for a single line. A single line needs not to be
marked.

1.1.4 COMMENT TEMPLATES *perlsupport−comm−templates*
−−−−−−−−−−−−−−−−−−−−−−−−
Frame comments, function descriptions and file header comments are read as
templates from the appropriate files (see |perlsupport−tempfiles|).

1.1.5 KEYWORD+comment *perlsupport−comm−keywords*
−−−−−−−−−−−−−−−−−−−−−
Preliminary line end comments to document (and find again) places where work
will be resumed shortly, like

 # :TODO:12.05.2004:Mn: <your comment>

Usually not meant for the final documentation.

−−
1.2 MENU 'Statements' *perlsupport−statements*
−−

1.2.1 NORMAL MODE, INSERT MODE. *perlsupport−stat−norm−ins*
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
An empty statement will be inserted and properly indented. The entry 'if{}'
will insert an if−statement:

if () {
}

The opening curly brace is on the same line as the keyword introducing it. To
place the brace on a new line set the appropriate global variable in .vimrc :

 let g:Perl_BraceOnNewLine = "yes"

The default values is "no". This flag applies to all structural blocks,
including subroutines.

1.2.2 VISUAL MODE. *perlsupport−stat−visual*
−−−−−−−−−−−−−−−−−−−
The highlighted area

xxxxx
xxxxx

can be surrounded by one of the following statements ('|'
marks the cursor positon after insertion):

 +−−+
 | |
 | do { |
 | xxxxx |
 | xxxxx |
 | } |
 | while (|); # −−−−− end do−while −−−−− |
 | |
 +−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
for (; ;) {	foreach	() {
xxxxx	xxxxx		
xxxxx	xxxxx		
}	} # −−−−− end foreach −−−−−		
+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+			
if () {	if () {
xxxxx	xxxxx		
xxxxx	xxxxx		
}	}		
	else {		
	}		

perlsupport.txt[help][−] 01/13/2006 07:29:33 PM Page 4

 +−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
unless () {	unless () {
xxxxx	xxxxx		
xxxxx	xxxxx		
}	}		
	else {		
	}		
+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+			
until () {	while () {
xxxxx	xxxxx		
xxxxx	xxxxx		
}	} # −−−−− end while −−−−−		
+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+			
{			
xxxxx			
xxxxx			
}			
 +−−+

The whole statement will be indented after insertion.

1.2.3 CODE SNIPPETS *perlsupport−stat−snippets*
−−−−−−−−−−−−−−−−−−−−
Code snippets are pieces of code which are kept in separate files in a special
directory. File names are used to identify the snippets.
The snippet directory has to be created by the user
($HOME/.vim/codesnippets−perl is the default).
Snippets are managed with the 3 entries

 Perl −> Statements −> read code snippet
 Perl −> Statements −> write code snippet
 Perl −> Statements −> edit code snippet

from the Statements submenu.

Creating a new snippet:
−−−−−−−−−−−−−−−−−−−−−−−
When nothing is marked, "write code snippet" will write the whole buffer
to a snippet file, otherwise the marked area will be written to a file.

Insert a snippet:
−−−−−−−−−−−−−−−−−
Select the appropriate file from the snippet directory ("read code snippet").
The inserted lines will be indented.

Indentation / no indentation
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Code snippets are normally indented after insertion. To suppress indentation
add the file extension "ni" or "noindent" to the snippet file name, e.g.

 parameter_handling.pl.noindent

−−
1.3 MENU 'Idioms' *perlsupport−idioms*
−−

1.3.1 STUB SUBROUTINE *perlsupport−stub−sub*
−−−−−−−−−−−−−−−−−−−−−−
In normal mode the entry 'subroutine' asks for a subroutine name and creates a
stub subroutine with one parameter:

 sub xxx {
 my ($par1) = @_;

 return ;
 } # −−−−−−−−−− end of subroutine xxx −−−−−−−−−−

perlsupport.txt[help][−] 01/13/2006 07:29:33 PM Page 5

In visual mode with a few lines marked this entry will enclose these lines in
a subroutine and generate a call to this subroutine. The lines

 print "x11 = $x11\n";
 print "x22 = $x22\n";
 print "x33 = $x33\n";

will be changed into

 abc();

 sub abc {
 my ($par1) = @_;
 print "x11 = $x11\n";
 print "x22 = $x22\n";
 print "x33 = $x33\n";
 return ;
 } # −−−−−−−−−− end of subroutine abc −−−−−−−−−−

The further adaption is left to the user.

1.3.2 OPENING FILES *perlsupport−open−files*
−−−−−−−−−−−−−−−−−−−−
All declarations beginning with 'my' and the multiline statements (subroutine,
open input file / output file / pipe) will be inserted below the current line.
Everything else will be inserted at the cursor position.

The entries 'open input file', 'open output file' and 'open pipe' ask for the
name of a file handle. After the insertion of the statements

 my $INFILE_file_name = ''; # input file name

 open my $INFILE, '<', $INFILE_file_name
 or die "$0 : failed to open input file $INFILE_file_name : $!\n";

 close $INFILE
 or warn "$0 : failed to close input file $INFILE_file_name : $!\n";

the 'Idioms'−menu will be extended with an entry for the new handle:

 <$INFILE>

After the insertion of the statements for an output file the 'Idioms'−menu
will be extended by a new print statement for the new handle, e.g.

 print $OUTFILE "\n";

Multi−line inserts will be indented after insertion.

−−
1.4 MENU 'Regex' *perlsupport−regex*
−−

In NORMAL and INSERT MODE the shown items will be inserted at the cursor
position.

In VISUAL MODE the following entries and all entries from the
'extended Regex' submenu will surround the marked area 'xxx' :

 () : (xxx)
 (|) : (xxx|)
 [] : [xxx]
 {} : {xxx}
 {,} : {xxx,}

−−
1.5 MENU 'CharCls' *perlsupport−charcls*
1.6 MENU 'File−Tests' *perlsupport−filetests*
1.7 MENU 'Spec−Var' *perlsupport−specvar*
−−

perlsupport.txt[help][−] 01/13/2006 07:29:33 PM Page 6

The entries from these menus will be inserted at the cursor position.

−−
1.8 MENU 'POD' *perlsupport−pod*
−−

Most entries insert POD commands below the cursor position, e.g.

 =pod

 =cut # back to Perl

The entries 'POD−>html', 'POD−>man', 'POD−>text' call the appropriate
translator which will generate the desired document from the current buffer.

The plugin taglist.vim (Yegappan Lakshmanan) can be expanded for POD
navigation. See |perlsupport−custom−navigate| .

1.8.1 MENU 'invisible POD' *perlsupport−pod−invisible*
−−−−−−−−−−−−−−−−−−−−−−−−−−−
These menu entries insert "invisible" POD sections as suggested in Damian
Conway's book "Perl Best Practices", e.g.

 =for Improvement: <keyword>
 <single paragraph>

 =cut # back to Perl

The text in the single paragraph will be ignored by the compiler and by a POD
formatter. This can be used to embed extended pieces of internal
documentation. For the paragraph to be invisible there must not be an empty
line between =for ... and the following paragraph.

The four formatter names "Improvement", "Optimization", "Rationale", and
"Workaround" are just suggestions. You can choose additional ones.
The <keyword> is a short explanation which makes navigation with taglist
easier. See |perlsupport−custom−navigate| .
Please note the colon after the "formatter name". It is needed for parsing
this construct.

1.8.2 RUN PODCHECKER *perlsupport−podchecker*
−−−−−−−−−−−−−−−−−−−−−
The current buffer will be run through the application podchecker to check the
syntax of the embedded POD or of a POD format documentation file (see
podchecker(1) and Pod::Checker).
Podchecker always reports errors. Printing warnings can be turned on and off
with the options −warnings/−nowarning . The default is to print warnings. To
turn the warnings of put the following line in the file .vimrc :

 let g:Perl_PodcheckerWarnings = "no"

−−
1.9 MENU 'Run' *perlsupport−run*
−−

1.9.1 RUN SCRIPT *perlsupport−run−script*
−−−−−−−−−−−−−−−−−
Running a Perl−script opens a window with name "Perl−Output" to display the
script output. The buffer and its content will disappear when closing the
window. If this window remains open it will be used for the next runs.
If the script doesn't produce shell output the output window will not be
opened (but you will see a message).
There is no file behind the window Perl−Output but the content can be saved
with a 'save as'.

1.9.2 CHECK SYNTAX *perlsupport−syntax−check*
−−−−−−−−−−−−−−−−−−−
The script is run as "perl −wc xxx.pl" with most warnings enabled to check the
syntax.

perlsupport.txt[help][−] 01/13/2006 07:29:33 PM Page 7

The Perl script efm_perl.pl (from the VIM standard distribution with a minor
improvement) is needed for checking the syntax of a file with a file name or a
pathname containing blanks. Due to a weakness in the file name representation
in the Perl output, messages have to be filtered in order to be processed
correctly by the VIM quickfix system.
This script has to be executable under UNIX.

1.9.3 COMMAND LINE ARGUMENTS *perlsupport−cmdline−args*
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
The entry 'command line arguments' calls an input dialog which asks for
command line arguments. These arguments are forwarded to the script which
is run by the 'run' entry. The arguments are kept until you change them.
The arguments can contain pipes and redirections, e.g.
 " infile.txt | sort −rn > result.txt"

The arguments belong to the current buffer (that is, each buffer can have its
own arguments). The input dialog has a history.

If the buffer gets a new name with "save as" the arguments will now belong to
the buffer with the new name.

1.9.4 DEBUG *perlsupport−run−debug*
−−−−−−−−−−−−
Start a debugger with the menu entry Run−>debug or with hotkey F9. One of three
debuggers can be started. The preference can be set with the variable
g:Perl_Debugger (possible values: 'perl' , 'ptkdb' , 'ddd'). The default is
'perl').

(1) perl
The script will be run as 'perl −d my−script.pl my−arguments' in an xterm.

(2) ptkdb
The debugger ptkdb will be started as an independent process. ptkdb is a Perl
debugger using a Tk GUI. The module Devel::ptkdb and the Tk tool kit have to be
installed.

(3) ddd
The data display debugger ddd is a graphical front end for GDB. It will be
started as an independent process.
The debugger ddd is not available under MS−Windows.

The debugger starts in an separate xterm or is a separate GUI−application
(e.g. ddd). This feature is therefore not available for Vim.

1.9.5 READ PERLDOC *perlsupport−perldoc*
−−−−−−−−−−−−−−−−−−−
If a (key−)word is under the cursor the entry 'read perldoc' tries to look up
the Perl documentation for this word using perldoc. If a whitespace is under
the cursor the user will be asked for a keyword. Search order:
 1. modules *−<−+
 2. functions | |
 3. FAQs +−>−+
This sequence is organized as a ring. If you search for the same item in the
module description (if any) again the plugin tries to look up a function
description, then a FAQ and then the module description again.

On a UNIX platform errors produced by perldoc will be suppressed (a few
module descriptions have POD errors!).

1.9.6 GENERATE PERL MODULE LIST *perlsupport−module−list−generation*
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
The entry 'Run −> generate Perl module list' generates a text file
(default: $HOME/.vim/plugin/perl−modules.list) which contains one line for
each Perl module installed on your machine:

 ...
 Fcntl (1.05) − load the C Fcntl.h defines
 File::Basename (2.72) − split a pathname into pieces
 File::CheckTree (4.3) − run many filetest checks on a tree
 File::Compare (1.1003) − Compare files or filehandles
 File::Copy (2.07) − Copy files or filehandles
 ...

perlsupport.txt[help][−] 01/13/2006 07:29:33 PM Page 8

The module list is generated by the Perl script $HOME/.vim/plugin/pmdesc3.pl
(based on pmdesc2 by Aristotle, see |perlsupport−credit|).
This script has to be executable under UNIX. The generation may take a while.
pmdesc3.pl has a POD included; see file doc/pmdesc3.text .

1.9.7 SHOW INSTALLED PERL MODULES *perlsupport−module−list*
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
The entry 'Run −> show installed Perl modules' loads the module list in a new
window. The full documentation for that module can be opened in a perldoc
help window using the hot keys <Shift−F1> , \h or \rp .
Looking up help with Shift−F1 works also in the perldoc help window.
Vim (without GUI): only \h and \rp are working.

1.9.8 RUN PERLTIDY *perlsupport−perltidy*
−−−−−−−−−−−−−−−−−−−
The buffer can be formatted with perltidy. If nothing is marked the whole
buffer will be formatted. If a region is marked only this region will be
formatted.
Perltidy has a lot of options. It is recommended to use a .perltidyrc
initialization file to define the preferred style (see 'man 1 perltidy').
See also |perlsupport−troubleshooting| .

1.9.9 RUN SMALLPROF *perlsupport−profile*
−−−−−−−−−−−−−−−−−−−−
Profile the script in the current buffer using the profiler Devel::SmallProf
(the module has to be installed, of course). The results will go to the file
smallprof.out in the current directory. This file will be opened automatically.
Devel::SmallProf (version 2.00_03) is controlled by 4 variables (default values
shown here):

 $DB::drop_zeros = 0; # Do not show lines which were never called: 1
 $DB::grep_format = 0; # Output on a format similar to grep : 1
 $DB::profile = 1; # Turn off profiling for a time: 0
 %DB::packages = ('main' =>1); # Only profile code in a certain package.

These variables can be put in a file called .smallprof in the current
directory. See the module documentation for more information.

1.9.10 RUN PERLCRITIC *perlsupport−perlcritic*
−−−−−−−−−−−−−−−−−−−−−
"perlcritic" is a Perl source code analyzer. It is the executable front−end
to the Perl::Critic engine, which attempts to identify awkward, hard to read,
error−prone, or unconventional constructs in your code. Most of the rules are
based on Damian Conway's book Perl Best Practices (PBP).
When run from the menu the current buffer will be saved and run through
perlcritic. The reported violations will be displayed in a separate quickfix
error window. There are three formats:

FORMAT 1 (one line; short)

 file | line | column | brief description

 Example:
 test.pl|23 col 1| Code before warnings are enabled

FORMAT 2 (one line; default)

 file | line | column | brief description | explanation or page number in PBP

 Example:
 test.pl|23 col 1| Code before warnings are enabled. See page 431 of PBP

FORMAT 3 (multi−line)

 file | line | column | brief description
 policy
 explanation or page number in PBP
 full diagnostic

 Example:
 test.pl|23 col 1| Code before warnings are enabled

perlsupport.txt[help][−] 01/13/2006 07:29:33 PM Page 9

 || [Perl::Critic::Policy::TestingAndDebugging::RequirePackageWarnings]
 || See page 431 of PBP.
 || Using warnings is probably the single most effective way to improve the
 || quality of your code. This policy requires that the `'use warnings''
 || statement must come before any other statements except `package',
 || `require', and other `use' statements. Thus, all the code in the entire
 || package will be affected.
 ||

Format 2 is the default. This can be changed by setting the variable
g:Perl_Perlcritic in .vimrc to another value (1−3):

 let g:Perl_PerlcriticFormat = 3

Format 3 may be your choice if you do not have a copy of PBP at hand. It
produces a lot of output.

The default configuration file for perlcritic is '.perlcriticrc'. perlcritic
will look for this file in the current directory first, and then in your home
directory. See the manual for more information ('man perlcritic' or
'perlcritic −man') especially how to influence the policies.

Consider using maps like
 imap <silent> <F7> <Esc> :cp <CR>
 imap <silent> <F8> <Esc> :cn <CR>
in your .vimrc file to jump over the error locations and make navigation
easier (see also file customization.vimrc |perlsupport−custom−files|).

1.9.11 SAVE BUFFER WITH TIMESTAMP *perlsupport−timestamp*
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Save the current buffer into a new file. The filename gets a trailing
timestamp. The format is YYYYMMDD−HHMMSS.
This feature can be used to comfortably save different profiling results
but it will work with any named buffer.
If you do a lot of profiling you want to add timestamps automatically. To
enable this feature put the following line into .vimrc :

 let g:Perl_ProfilerTimestamp = "yes"

The default value is "no".

1.9.12 HARDCOPY *perlsupport−hardcopy*
−−−−−−−−−−−−−−−
Generates a PostScript file from the whole buffer or from a marked region.
On a MS−Windows system a printer dialog is displayed.

The print header contains date and time for the current locale. The definition
used is

 let s:Perl_Printheader = "%<%f%h%m%< %=%{strftime('%x %X')} Page %N"

The current locale can be overwritten by changing the language, e.g.

 :language C

or by setting a global variable in the file .vimrc , e.g. :

 let g:Perl_Printheader = "%<%f%h%m%< %=%{strftime('%x %X')} SEITE %N"

See :h printheader and :h strftime() for more details.

1.9.13 XTERM SIZE *perlsupport−xterm*
−−−−−−−−−−−−−−−−−
The size of the xterm used for debugging (|perlsupport−run−debug|) or for
running the script (below) can be set by this menu entry. The default is 80
columns with 24 lines.
This feature is not available under MS−Windows.

1.9.14 CHANGE OUTPUT DESTINATION *perlsupport−output*
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Running a Perl script can be done in three ways:

perlsupport.txt[help][−] 01/13/2006 07:29:33 PM Page 10

(1) The script can be run from the command line as usual.
(2) The output can be directed into a window with name "Perl−Output".
 The buffer and its content will disappear when the window is closed and
 reused otherwise.
(3) The script can be run in an xterm.

The output method can be chosen with the menu entry 'Run−>output: ...'.
This menu has three states:

 output: VIM−>buffer−>xterm
 output: BUFFER−>xterm−>vim
 output: XTERM−>vim−>buffer

The first (uppercase) item shows the current method. The default is 'vim' .
This can be changed by setting the variable g:Perl_OutputGvim to another value.
Possible values are 'vim' , 'buffer' and 'xterm' .

Vim (non−GUI) : The output destination can be toggled between (1) and (2)
 using the hotkey \ro .

The xterm defaults can be set in .vimrc by the variable g:Perl_XtermDefaults .
The default is "−fa courier −fs 12 −geometry 80x24" :
 font name : −fa courier
 font size : −fs 12
 terminal size : −geometry 80x24
See 'xterm −help' for more options. Xterms are not available under MS−Windows.

−−
1.10 'help' *perlsupport−help*
−−

The root menu entry 'help' shows this plugin help in a help window. The help
tags must have been generated with
 :helptags ~/.vim/doc

==
2. USAGE WITHOUT GUI (Vim) *perlsupport−usage−vim*
==

The frequently used constructs can be inserted with key mappings. The
mappings are also described in the document perl−hot−keys.pdf (reference
card).

 −− Load / Unload Perl Support −−−−−−−−−−−−

 \lps Load Perl Support (The key mappings below are defined)
 \ups Unload Perl Support (The key mappings below are undefined.)

 −− Comments −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 \cl Line End Comment
 \cf Frame Comment
 \cu Function Description
 \ch File Header
 \ckb Keyword comment BUG
 \ckt Keyword comment TODO
 \ckr Keyword comment TRICKY
 \ckw Keyword comment WARNING
 \ckn Keyword comment New_Keyword
 \cc code to comment
 \co comment to code
 \cd Date
 \ct Date & Time
 \cv vim modeline

 −− Statements −−−−−−−−−−−−−−−−−−−−−−−−−−−−

 \ad do { } while
 \af for { }
 \ao foreach { }
 \ai if { }
 \ae if { } else { }
 \au unless { }

perlsupport.txt[help][−] 01/13/2006 07:29:33 PM Page 11

 \an unless { } else { }
 \at until { }
 \aw while { }
 \a{ { }

 −− Idioms −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 \dm my $;
 \dy my $ = ;
 \d, my ($, $);
 \d1 my @;
 \d2 my @ = (,,);
 \d3 my %;
 \d4 my % = (=>,=>,);
 \d5 my $regex_ = '';
 \d6 my $regex_ = qr//;
 \d7 $ =~ m//
 \d8 $ =~ s///
 \d9 $ =~ tr///
 \dp print "...\n";
 \df printf ("...\n");
 \ds subroutine
 \di open input file
 \do open output file
 \de open pipe

 −− POSIX Character Classes −−−−−−−−−−−−−−−

 \la [:alnum:]
 \lh [:alpha:]
 \li [:ascii:]
 \lb [:blank:]
 \lc [:cntrl:]
 \ld [:digit:]
 \lg [:graph:]
 \ll [:lower:]
 \lp [:print:]
 \ln [:punct:]
 \ls [:space:]
 \lu [:upper:]
 \lw [:word:]
 \lx [:xdigit:]

 −− Run −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 \rr update file, run script see |perlsupport−run−script|
 \rs update file, check syntax see |perlsupport−syntax−check|
 \ra set command line argument see |perlsupport−cmdline−args|
 \rd start debugger see |perlsupport−run−debug|
 \re make script executable (*)
 \rp read perldoc see |perlsupport−perldoc|
 \ri show installed Perl modules see |perlsupport−module−list|
 \rg generation Perl module list see |perlsupport−module−list−generation|
 \ry run perltidy see |perlsupport−perltidy|
 \rm run SmallProf see |perlsupport−profile|
 \rc run perlcritic see |perlsupport−perlcritic|
 \rt save buffer with timestamp see |perlsupport−timestamp|
 \rh hardcopy buffer to FILENAME.ps see |perlsupport−hardcopy|
 \rk settings and hotkeys
 \rx set xterm size (*) see |perlsupport−xterm|
 \ro change output destination see |perlsupport−output|

 −− Help −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 \h read perldoc see |perlsupport−perldoc|

(*) Linux/UNIX only

File perl−hot−keys.pdf contains a reference card for these key mappings.
Mult−iline inserts and code snippets will be indented after insertion.

The hotkeys are defined in the file type plugin perl.vim (part of this
perl−support plugin package).

perlsupport.txt[help][−] 01/13/2006 07:29:33 PM Page 12

==
3. HOTKEYS *perlsupport−hotkeys*
==

The following hotkeys are defined in normal, visual and insert mode:

 Shift−F1 read perldoc (for the word under the cursor)
 F9 start a debugger
 Alt−F9 run syntax check
 Ctrl−F9 run script
 Shift−F9 set command line arguments (buffer related)

These hotkeys are defined in the file type plugin ~/.vim/ftplugin/perl.vim .

Note for xterm users (Vim without GUI): The function key combinations
Shift−Fx, Alt−Fx and Ctrl−Fx do not work. F9 is also not working to prevent
unintentional use. Use hotkeys instead |perlsupport−usage−vim| .

==
4. CUSTOMIZATION *perlsupport−customization*
==

−−
4.1 FILES *perlsupport−custom−files*
−−

README.perlsupport Installation, release notes.

codesnippets−perl/* Some Perl code snippets as a starting point.

doc/perlsupport.txt The help file for the local online help.

ftplugin/perl.vim A file type plugin. Define hotkeys, create a local
 dictionary for each Perl file.

plugin/perl−support.vim The Perl plugin for Vim/gVim.
plugin/efm_perl.pl Perl script; reformats the error messages of the
 Perl interpreter
plugin/pmdesc3.pl Perl script; generates a list of all installed Perl modules
plugin/wrapper.sh The wrapper script for the use of an xterm.

plugin/templates/perl−file−header −+− Perl template files
plugin/templates/perl−frame | (see section TEMPLATE FILES below).
plugin/templates/perl−function−description |
plugin/templates/perl−module−header −+

wordlists/perl.list A file used as dictionary for automatic word completion.
 This file is referenced in the file customization.vimrc .

−−−−−−−−−−−−−−−−−−−−−−− −−−
 The following files and extensions are for convenience only.
 perl−support.vim will work without them.
 −−−

rc/customization.vimrc Additional settings I use in .vimrc: incremental search,
 tabstop, hot keys, font, use of dictionaries, ...
 The file is commented. Append it to your .vimrc if you like.

rc/customization.gvimrc Additional settings I use in .gvimrc:
 hot keys, mouse settings, ...
 The file is commented. Append it to your .gvimrc if you like.

rc/customization.ctags Additional settings I use in .ctags to enable navigation
 through POD with the plugin taglist.vim.

rc/customization.perltidyrc Additional settings I use in .perltidyrc to enable
 customize perltidy.

rc/customization.SmallProf Settings I use in .SmallProf .

doc/perl−hot−keys.pdf Reference card for the key mappings.
 The mappings can be used with the non−GUI Vim,

perlsupport.txt[help][−] 01/13/2006 07:29:33 PM Page 13

 because the menus are not available.

−−
4.2 GLOBAL VARIABLES *perlsupport−custom−variables*
−−

Several global variables are checked by the script to customize it:

−−
global variable default value tag (see below)
−−
g:Perl_AuthorName "" |AUTHOR|
g:Perl_AuthorRef "" |AUTHORREF|
g:Perl_Email "" |EMAIL|
g:Perl_Company "" |COMPANY|
g:Perl_Project "" |PROJECT|
g:Perl_CopyrightHolder "" |COPYRIGHTHOLDER|

g:Perl_Template_Directory root_dir.'plugin/templates/'
g:Perl_Template_File 'perl−file−header'
g:Perl_Template_Module 'perl−module−header'
g:Perl_Template_Frame 'perl−frame'
g:Perl_Template_Function 'perl−function−description'

g:Perl_CodeSnippets root_dir.'codesnippets−perl/'
g:Perl_LoadMenus 'yes'
g:Perl_Dictionary_File ''
g:Perl_Root '&Perl.'
g:Perl_MenuHeader 'yes'

g:Perl_PerlModuleList root_dir.'plugin/perl−modules.list'
g:Perl_PerlModuleListGenerator root_dir.'plugin/pmdesc3.pl'
g:Perl_OutputGvim "vim"
g:Perl_XtermDefaults "−fa courier −fs 12 −geometry 80x24"
g:Perl_Debugger "perl"
g:Perl_ProfilerTimestamp "no"
g:Perl_LineEndCommColDefault 49
g:Perl_BraceOnNewLine "no"
g:Perl_PodcheckerWarnings "yes"
g:Perl_PerlcriticFormat 2

The variable root_dir will automatically be set to one of the following values:
 $HOME.'/.vim/' for Linux/Unix
 $VIM.'/vimfiles/' for MS−Windows

−−

1. group: Defines the text which will be inserted for the tags when a template
 is read in (see also TEMPLATE FILES AND TAGS below).

 g:Perl_AuthorName : author name
 g:Perl_AuthorRef : author reference (e.g. acronym)
 g:Perl_Email : email address
 g:Perl_Company : name of the company / institution
 g:Perl_Project : project
 g:Perl_CopyrightHolder : the copyright holder

2. group: Sets the template directory and the names of the template files (see below).

3. group: g:Perl_CodeSnippets : The name of the code snippet directory (see below).
 g:Perl_LoadMenus : Load menus and mappings ("yes", "no") at startup.
 g:Perl_Dictionary_File : Path and filename of the Perl word list used for
 dictionary completion (see below).
 g:Perl_Root : The name of the root menu entry of this plugin
 (see below).
 g:Perl_MenuHeader : Switch submenu titles on/off.

4. group: g:Perl_PerlModuleList : The name of the Perl module list (text file,
 see below).
 g:Perl_PerlModuleListGenerator : The command line which starts the
 module list generation.
 g:Perl_OutputGvim : when script is running output goes to the vim
 command line ("vim"), to a buffer ("buffer")

perlsupport.txt[help][−] 01/13/2006 07:29:33 PM Page 14

 or to an xterm ("xterm").
 g:Perl_XtermDefaults : the xterm defaults
 g:Perl_Debugger : the debugger called by F9 (perl, ptkdb, ddd).
 g:Perl_ProfilerTimestamp : add time stamp to the profiler buffer name
 g:Perl_LineEndCommColDefault : default starting column for line end comments
 g:Perl_BraceOnNewLine : opening brace (not) on a new line
 g:Perl_PodcheckerWarnings : podchecker warnings on/off
 g:Perl_PerlcriticFormat : perlcritic error format

To override the defaults add appropriate assignments to .vimrc .
Set at least some personal details into .vimrc by overriding some defaults.
Here the minimal personalization (my settings as an example, of course):

 let g:Perl_AuthorName = 'Dr.−Ing. Fritz Mehner'
 let g:Perl_AuthorRef = 'Mn'
 let g:Perl_Email = 'mehner@fh−swf.de'
 let g:Perl_Company = 'FH SÃ¼dwestfalen, Iserlohn'

−−
4.3 THE ROOT MENU *perlsupport−custom−root*
−−

The variable g:Perl_Root, if set (in .vimrc or in .gvimrc), gives the name of
the single gVim root menu entry in which the Perl submenus will be put.
The default is
 '&Perl.'
Note the terminating dot. A single root menu entry is appropriate if the
screen is limited or several plugins are in use.

If set to "", this single root menu entry will not appear. Now all submenus
are put into the gVim root menu. Nice for a Perl−only−programmer and Perl
courses.

−−
4.4 NAVIGATE THROUGH PODs *perlsupport−custom−navigate*
−−

The plugin taglist.vim (Author: Yegappan Lakshmanan) is a source code browser
plugin for Vim and provides an overview of the structure of source code files
and allows you to efficiently browse through source code files for different
programming languages. It is based on ctags (Exuberant Ctags, Darren Hiebert,
http://ctags.sourceforge.net).
The file rc/customization.ctags is an extension for the configuration file of
ctags. If appended to $HOME/.ctags (the initialization file for ctags)
taglist can show the structure of the included POD as an table of content.

The taglist navigation window for the module Eliza.pm starts like this:

 Eliza.pm (/home/mehner)
 subroutines
 Version
 new
 _initialize
 AUTOLOAD
 command_interface
 preprocess
 postprocess
 _testquit
 _debug_memory
 transform
 parse_script_data

 POD
 NAME
 SYNOPSIS
 DESCRIPTION
 INSTALLATION
 USAGE
 MAIN DATA MEMBERS
 . %decomplist
 . %reasmblist
 . %reasmblist_for_memory

perlsupport.txt[help][−] 01/13/2006 07:29:33 PM Page 15

 . . .

Now you can navigate through the embedded POD with a mouse click on these
entries. To enable this feature

1) append rc/customization.ctags to $HOME/.ctags (or create this file)

2) add the following lines to $HOME/.vimrc :

 "
 "−−−
 " taglist.vim : toggle the taglist window
 " taglist.vim : define the title texts for Perl
 "−−−
 noremap <silent> <F11> <Esc><Esc> :Tlist <CR>
 inoremap <silent> <F11> <Esc><Esc> :Tlist <CR>

 let tlist_perl_settings='perl;c:constants;l:labels;s:subroutines;d:POD'

3) restart vim/gvim

The two maps will toggle the taglist window (hotkey F11) in all editing modes.
The assignment defines the headings for the Perl sections in the taglist window.

IMPORTANT : The POD contents will not be displayed if the POD comes after an
__END__ token. Ctags (current version 5.5.4) does not parse beyond this token.
You may therefore want not to use __END__ in your own modules.

−−
4.5 Tabulator width *perlsupport−custom−tab*
−−

The Perl Style Guide recommends a tabulator setting of 4. You can force this
setting for all files with file type 'perl' by uncommenting the two lines

 "setlocal tabstop=4
 "setlocal shiftwidth=4

in the file type plugin ~/.vim/ftplugin/perl.vim .

==
5. TEMPLATE FILES AND TAGS *perlsupport−tempfiles*
==

−−
5.1 TEMPLATE FILES
−−

Four menu entries generate block comments:

 Perl −> Comments −> Frame Comm.
 Perl −> Comments −> Function Descr.
 Perl −> Comments −> File Header (.pl)
 Perl −> Comments −> File Header (.pm)

The comments which will be inserted by these menu entries are read from
template files:

−−
MENU ENTRY FILE GLOBAL VARIABLE
−−
Frame Comment perl−frame g:Perl_Template_Frame
Function Description perl−function−description g:Perl_Template_Function
File Header (.pl) perl−file−header g:Perl_Template_File
File Header (.pm) perl−module−header g:Perl_Template_Module
−−

The template files can be written or changed by the user to fulfill special
requirements (layout for a project or work group already exists, file headers /
blocks have to be prepared for a documentation tool, ...). They can hold not
only comments but a complete file skeleton if this is necessary. So you may
want to lay out your own templates.

perlsupport.txt[help][−] 01/13/2006 07:29:33 PM Page 16

−−
5.2 TAGS *perlsupport−tags*
−−

The comments in these files do not have to be personalized but they can.
The text can contain the following tags which are replaced by the appropriate
information when the file is read in:

 |AUTHOR|
 |DATE|
 |EMAIL|
 |FILENAME|
 |YEAR|

 |AUTHORREF|
 |COMPANY|
 |COPYRIGHTHOLDER|
 |PROJECT|
 |TIME|

 |CURSOR|

Each tag can occur more than once. The tag |CURSOR| may appear only once.
The tag |CURSOR| will be the cursor position after the block is read in.
There is no need to use any of these tags, some or all can be missing.

The template files can actually be links pointing to existing templates.

==
6. PERL DICTIONARY *perlsupport−dictionary*
==

The file perl.list contains words used as dictionary for automatic word
completion. This feature is enabled by default. The default word list is

 $HOME/.vim/wordlists/perl.list

If you want to use an additional list MyPerl.List put the following line into
 .vimrc :

 let g:Perl_Dictionary_File = "$HOME/.vim/wordlists/perl.list,".
 \ "$HOME/.vim/wordlists/MyPerl.List"

The right side is a comma separated list of files. Note the point at the end
of the first line (string concatenation) and the backslash in front of the
second line (continuation line).
You can use Vim's dictionary feature CTRL−X, CTRL−K (and CTRL−P, CTRL−N).

==
7. MS−Windows PARTICULARITIES *perlsupport−windows*
==

The plugins should go into the directory structure below the local
installation directory $HOME/.vim/ for LINUX/UNIX and $VIM/vimfiles/ for
MS−Windows.
The values of the two variables can be found from inside Vim:
 :echo $VIM
or
 :echo $HOME

Configuration files:

 LINUX/UNIX : $HOME/.vimrc and $HOME/.gvimrc
 MS−Windows : $VIM/_vimrc and $VIM/_gvimrc

==
8. TROUBLESHOOTING *perlsupport−troubleshooting*
==

* Script not executable.

perlsupport.txt[help][−] 01/13/2006 07:29:33 PM Page 17

 − Script executable from the command line ?
 − Perl installation correct ?
 − PATH variable correct ?
 − Script set executable (file access permission under LINUX/UNIX) ?
 − Script syntax correct ?
 − Necessary modules installed ?

* Some plugin features not present (e.g. hotkeys).
 − Does the file type plugin $HOME/.vim/ftplugin/perl.vim exist ?

* Some hotkeys do not work.
 − The hotkeys might be in use by your graphical desktop environment.
 Under KDE Ctrl−F9 is the hotkey which let you switch to the 9. desktop.
 The key settings can usually be redefined.

* perltidy not running / messing up my file
 Unix/Linux: you have had a proper installation of perltidy, but now it does
 not work or messes up your file.
 The start script '/usr/bin/perltidy' needs the module 'Perl::Tidy.pm'. Most
 likely you have updated Perl and the module can now longer be found. The
 easiest remedy is to reinstall perltidy. Check the installation with the
 command "perltidy −v" from the command line.

==
9. RELEASE NOTES *perlsupport−release−notes*
==

See file README.perlsupport .

==
10. CREDITS *perlsupport−credits*
==

David Fishburn <fishburn@ianywhere.com> for the implementation of the
 single root menu and several suggestions for improving the customization
 and the documentation.

Ryan Hennig <hennig@amazon.com> improved the install script.

Aristotle, http://qs321.pair.com/~monkads/ is the author of the script pmdesc2
 which is the base of the script pmdesc3.pl.

David Fishburn contributed changes for the Windows platform and suggested to
 not let enter snippets and templates the list of alternate files.

The code snippet files pod−template−application.pl and pod−template−module.pl
 are taken from Damian Conway's book "Perl Best Practices".

==
vim:tw=78:noet:ts=2:ft=help:norl:

